Package 'bit64'

Title: A S3 Class for Vectors of 64bit Integers
Description: Package 'bit64' provides serializable S3 atomic 64bit (signed) integers. These are useful for handling database keys and exact counting in +-2^63. WARNING: do not use them as replacement for 32bit integers, integer64 are not supported for subscripting by R-core and they have different semantics when combined with double, e.g. integer64 + double => integer64. Class integer64 can be used in vectors, matrices, arrays and data.frames. Methods are available for coercion from and to logicals, integers, doubles, characters and factors as well as many elementwise and summary functions. Many fast algorithmic operations such as 'match' and 'order' support inter- active data exploration and manipulation and optionally leverage caching.
Authors: Jens Oehlschlägel [aut, cre], Leonardo Silvestri [ctb]
Maintainer: Jens Oehlschlägel <[email protected]>
License: GPL-2 | GPL-3
Version: 4.0.5
Built: 2024-07-06 03:12:44 UTC
Source: https://github.com/truecluster/bit64

Help Index


A S3 class for vectors of 64bit integers

Description

Package 'bit64' provides fast serializable S3 atomic 64bit (signed) integers that can be used in vectors, matrices, arrays and data.frames. Methods are available for coercion from and to logicals, integers, doubles, characters and factors as well as many elementwise and summary functions.
Version 0.8 With 'integer64' vectors you can store very large integers at the expense of 64 bits, which is by factor 7 better than 'int64' from package 'int64'. Due to the smaller memory footprint, the atomic vector architecture and using only S3 instead of S4 classes, most operations are one to three orders of magnitude faster: Example speedups are 4x for serialization, 250x for adding, 900x for coercion and 2000x for object creation. Also 'integer64' avoids an ongoing (potentially infinite) penalty for garbage collection observed during existence of 'int64' objects (see code in example section).
Version 0.9 Package 'bit64' - which extends R with fast 64-bit integers - now has fast (single-threaded) implementations the most important univariate algorithmic operations (those based on hashing and sorting). We now have methods for 'match', ' 'quantile', 'median' and 'summary'. Regarding data management we also have novel generics 'unipos' (positions of the unique values), 'tiepos' ( positions of ties), 'keypos' (positions of foreign keys in a sorted dimension table) and derived methods 'as.factor' and 'as.ordered'. This 64- bit functionality is implemented carefully to be not slower than the respective 32-bit operations in Base R and also to avoid outlying waiting times observed with 'order', 'rank' and 'table' (speedup factors 20/16/200 respective). This increases the dataset size with wich we can work truly interactive. The speed is achieved by simple heuristic optimizers in high- level functions choosing the best from multiple low-level algorithms and further taking advantage of a novel caching if activated. In an example R session using a couple of these operations the 64-bit integers performed 22x faster than base 32-bit integers, hash-caching improved this to 24x, sortorder-caching was most efficient with 38x (caching hashing and sorting is not worth it with 32x at duplicated RAM consumption).

Usage

integer64(length)
 ## S3 method for class 'integer64'
is(x)
 ## S3 replacement method for class 'integer64'
length(x) <- value
 ## S3 method for class 'integer64'
print(x, quote=FALSE, ...)
 ## S3 method for class 'integer64'
str(object, vec.len  = strO$vec.len, give.head = TRUE, give.length = give.head, ...)

Arguments

length

length of vector using integer

x

an integer64 vector

object

an integer64 vector

value

an integer64 vector of values to be assigned

quote

logical, indicating whether or not strings should be printed with surrounding quotes.

vec.len

see str

give.head

see str

give.length

see str

...

further arguments to the NextMethod

Details

Package: bit64
Type: Package
Version: 0.5.0
Date: 2011-12-12
License: GPL-2
LazyLoad: yes
Encoding: latin1

Value

integer64 returns a vector of 'integer64', i.e. a vector of double decorated with class 'integer64'.

Design considerations

64 bit integers are related to big data: we need them to overcome address space limitations. Therefore performance of the 64 bit integer type is critical. In the S language – designed in 1975 – atomic objects were defined to be vectors for a couple of good reasons: simplicity, option for implicit parallelization, good cache locality. In recent years many analytical databases have learnt that lesson: column based data bases provide superior performance for many applications, the result are products such as MonetDB, Sybase IQ, Vertica, Exasol, Ingres Vectorwise. If we introduce 64 bit integers not natively in Base R but as an external package, we should at least strive to make them as 'basic' as possible. Therefore the design choice of bit64 not only differs from int64, it is obvious: Like the other atomic types in Base R, we model data type 'integer64' as a contiguous atomic vector in memory, and we use the more basic S3 class system, not S4. Like package int64 we want our 'integer64' to be serializeable, therefore we also use an existing data type as the basis. Again the choice is obvious: R has only one 64 bit data type: doubles. By using doubles, integer64 inherits some functionality such as is.atomic, length, length<-, names, names<-, dim, dim<-, dimnames, dimnames.
Our R level functions strictly follow the functional programming paragdim: no modification of arguments or other sideffects. Before version 0.93 we internally deviated from the strict paradigm in order to boost performance. Our C functions do not create new return values, instead we pass-in the memory to be returned as an argument. This gives us the freedom to apply the C-function to new or old vectors, which helps to avoid unnecessary memory allocation, unnecessary copying and unnessary garbage collection. Prior to 0.93 within our R functions we also deviated from conventional R programming by not using attr<- and attributes<- because they always did new memory allocation and copying in older R versions. If we wanted to set attributes of return values that we have freshly created, we instead used functions setattr and setattributes from package bit. From version 0.93 setattr is only used for manipulating cache objects, in ramsort.integer64 and sort.integer64 and in as.data.frame.integer64.

Arithmetic precision and coercion

The fact that we introduce 64 bit long long integers – without introducing 128-bit long doubles – creates some subtle challenges: Unlike 32 bit integers, the integer64 are no longer a proper subset of double. If a binary arithmetic operation does involve a double and a integer, it is a no-brainer to return double without loss of information. If an integer64 meets a double, it is not trivial what type to return. Switching to integer64 limits our ability to represent very large numbers, switching to double limits our ability to distinguish x from x+1. Since the latter is the purpose of introducing 64 bit integers, we usually return integer64 from functions involving integer64, for example in c, cbind and rbind.
Different from Base R, our operators +, -, %/% and %% coerce their arguments to integer64 and always return integer64.
The multiplication operator * coerces its first argument to integer64 but allows its second argument to be also double: the second argument is internaly coerced to 'long double' and the result of the multiplication is returned as integer64.
The division / and power ^ operators also coerce their first argument to integer64 and coerce internally their second argument to 'long double', they return as double, like sqrt, log, log2 and log10 do.

argument1 op argument2 -> coerced1 op coerced2 -> result
integer64 + double -> integer64 + integer64 -> integer64
double + integer64 -> integer64 + integer64 -> integer64
integer64 - double -> integer64 - integer64 -> integer64
double - integer64 -> integer64 - integer64 -> integer64
integer64 %/% double -> integer64 %/% integer64 -> integer64
double %/% integer64 -> integer64 %/% integer64 -> integer64
integer64 %% double -> integer64 %% integer64 -> integer64
double %% integer64 -> integer64 %% integer64 -> integer64
integer64 * double -> integer64 * long double -> integer64
double * integer64 -> integer64 * integer64 -> integer64
integer64 / double -> integer64 / long double -> double
double / integer64 -> integer64 / long double -> double
integer64 ^ double -> integer64 / long double -> double
double ^ integer64 -> integer64 / long double -> double

Creating and testing S3 class 'integer64'

Our creator function integer64 takes an argument length, creates an atomic double vector of this length, attaches an S3 class attribute 'integer64' to it, and that's it. We simply rely on S3 method dispatch and interpret those 64bit elements as 'long long int'.
is.double currently returns TRUE for integer64 and might return FALSE in a later release. Consider is.double to have undefined behaviour and do query is.integer64 before querying is.double. The methods is.integer64 and is.vector both return TRUE for integer64. Note that we did not patch storage.mode and typeof, which both continue returning 'double' Like for 32 bit integer, mode returns 'numeric' and as.double) tries coercing to double). It is possible that 'integer64' becomes a vmode in package ff.
Further methods for creating integer64 are range which returns the range of the data type if calles without arguments, rep, seq.
For all available methods on integer64 vectors see the index below and the examples.

Index of implemented methods

creating,testing,printing see also description
NA_integer64_ NA_integer_ NA constant
integer64 integer create zero atomic vector
runif64 runif create random vector
rep.integer64 rep
seq.integer64 seq
is.integer64 is
is.integer inherited from Base R
is.vector.integer64 is.vector
identical.integer64 identical
length<-.integer64 length<-
length inherited from Base R
names<- inherited from Base R
names inherited from Base R
dim<- inherited from Base R
dim inherited from Base R
dimnames<- inherited from Base R
dimnames inherited from Base R
str inherited from Base R, does not print values correctly
print.integer64 print
str.integer64 str
coercing to integer64 see also description
as.integer64 generic
as.integer64.bitstring as.bitstring
as.integer64.character character
as.integer64.double double
as.integer64.integer integer
as.integer64.integer64 integer64
as.integer64.logical logical
as.integer64.NULL NULL
coercing from integer64 see also description
as.bitstring as.bitstring generic
as.bitstring.integer64
as.character.integer64 as.character
as.double.integer64 as.double
as.integer.integer64 as.integer
as.logical.integer64 as.logical
data structures see also description
c.integer64 c vector concatenate
cbind.integer64 cbind column bind
rbind.integer64 rbind row bind
as.data.frame.integer64 as.data.frame coerce atomic object to data.frame
data.frame inherited from Base R since we have coercion
subscripting see also description
[.integer64 [ vector and array extract
[<-.integer64 [<- vector and array assign
[[.integer64 [[ scalar extract
[[<-.integer64 [[<- scalar assign
binary operators see also description
+.integer64 + returns integer64
-.integer64 - returns integer64
*.integer64 * returns integer64
^.integer64 ^ returns double
/.integer64 / returns double
%/%.integer64 %/% returns integer64
%%.integer64 %% returns integer64
comparison operators see also description
==.integer64 ==
!=.integer64 !=
<.integer64 <
<=.integer64 <=
>.integer64 >
>=.integer64 >=
logical operators see also description
!.integer64 !
&.integer64 &
|.integer64 |
xor.integer64 xor
math functions see also description
is.na.integer64 is.na returns logical
format.integer64 format returns character
abs.integer64 abs returns integer64
sign.integer64 sign returns integer64
log.integer64 log returns double
log10.integer64 log10 returns double
log2.integer64 log2 returns double
sqrt.integer64 sqrt returns double
ceiling.integer64 ceiling dummy returning its argument
floor.integer64 floor dummy returning its argument
trunc.integer64 trunc dummy returning its argument
round.integer64 round dummy returning its argument
signif.integer64 signif dummy returning its argument
cumulative functions see also description
cummin.integer64 cummin
cummax.integer64 cummax
cumsum.integer64 cumsum
cumprod.integer64 cumprod
diff.integer64 diff
summary functions see also description
range.integer64 range
min.integer64 min
max.integer64 max
sum.integer64 sum
mean.integer64 mean
prod.integer64 prod
all.integer64 all
any.integer64 any
algorithmically complex functions see also description (caching)
match.integer64 match position of x in table (h//o/so)
%in%.integer64 %in% is x in table? (h//o/so)
duplicated.integer64 duplicated is current element duplicate of previous one? (h//o/so)
unique.integer64 unique (shorter) vector of unique values only (h/s/o/so)
unipos.integer64 unipos positions corresponding to unique values (h/s/o/so)
tiepos.integer64 tiepos positions of values that are tied (//o/so)
keypos.integer64 keypos position of current value in sorted list of unique values (//o/so)
as.factor.integer64 as.factor convert to (unordered) factor with sorted levels of previous values (//o/so)
as.ordered.integer64 as.ordered convert to ordered factor with sorted levels of previous values (//o/so)
table.integer64 table unique values and their frequencies (h/s/o/so)
sort.integer64 sort sorted vector (/s/o/so)
order.integer64 order positions of elements that would create sorted vector (//o/so)
rank.integer64 rank (average) ranks of non-NAs, NAs kept in place (/s/o/so)
quantile.integer64 quantile (existing) values at specified percentiles (/s/o/so)
median.integer64 median (existing) value at percentile 0.5 (/s/o/so)
summary.integer64 summary (/s/o/so)
all.equal.integer64 all.equal test if two objects are (nearly) equal (/s/o/so)
helper functions see also description
minusclass minusclass removing class attritbute
plusclass plusclass inserting class attribute
binattr binattr define binary op behaviour
tested I/O functions see also description
read.table inherited from Base R
write.table inherited from Base R
serialize inherited from Base R
unserialize inherited from Base R
save inherited from Base R
load inherited from Base R
dput inherited from Base R
dget inherited from Base R

Limitations inherited from implementing 64 bit integers via an external package

  • vector size of atomic vectors is still limited to .Machine$integer.max. However, external memory extending packages such as ff or bigmemory can extend their address space now with integer64. Having 64 bit integers also help with those not so obvious address issues that arise once we exchange data with SQL databases and datawarehouses, which use big integers as surrogate keys, e.g. on indexed primary key columns. This puts R into a relatively strong position compared to certain commercial statistical softwares, which sell database connectivity but neither have the range of 64 bit integers, nor have integers at all, nor have a single numeric data type in their macro-glue-language.

  • literals such as 123LL would require changes to Base R, up to then we need to write (and call) as.integer64(123L) or as.integer64(123) or as.integer64('123'). Only the latter allows to specify numbers beyond Base R's numeric data types and therefore is the recommended way to use – using only one way may facilitate migrating code to literals at a later stage.

Limitations inherited from Base R, Core team, can you change this?

  • identical with default parameters does not distinguish all bit-patterns of doubles. For testing purposes we provide a wrapper identical.integer64 that will distinguish all bit-patterns. It would be desireable to have a single call of identical handle both, double and integer64.

  • the colon operator : officially does not dispatches S3 methods, however, we have made it generic

         from <- lim.integer64()[1]
         to <- from+99
         from:to
       

    As a limitation remains: it will only dispatch at its first argument from but not at its second to.

  • is.double does not dispatches S3 methods, However, we have made it generic and it will return FALSE on integer64.

  • c only dispatches c.integer64 if the first argument is integer64 and it does not recursively dispatch the proper method when called with argument recursive=TRUE Therefore

          c(list(integer64,integer64))
        

    does not work and for now you can only call

           c.integer64(list(x,x))
         
  • generic binary operators fail to dispatch *any* user-defined S3 method if the two arguments have two different S3 classes. For example we have two classes bit and bitwhich sparsely representing boolean vectors and we have methods &.bit and &.bitwhich. For an expression involving both as in bit & bitwhich, none of the two methods is dispatched. Instead a standard method is dispatched, which neither handles bit nor bitwhich. Although it lacks symmetry, the better choice would be to dispatch simply the method of the class of the first argument in case of class conflict. This choice would allow authors of extension packages providing coherent behaviour at least within their contributed classes. But as long as none of the package authors methods is dispatched, he cannot handle the conflicting classes at all.

  • unlist is not generic and if it were, we would face similar problems as with c()

  • vector with argument mode='integer64' cannot work without adjustment of Base R

  • as.vector with argument mode='integer64' cannot work without adjustment of Base R

  • is.vector does not dispatch its method is.vector.integer64

  • mode<- drops the class 'integer64' which is returned from as.integer64. Also it does not remove an existing class 'integer64' when assigning mode 'integer'.

  • storage.mode<- does not support external data types such as as.integer64

  • matrix does drop the 'integer64' class attribute.

  • array does drop the 'integer64' class attribute. In current R versions (1.15.1) this can be circumvented by activating the function as.vector.integer64 further down this file. However, the CRAN maintainer has requested to remove as.vector.integer64, even at the price of breaking previously working functionality of the package.

  • str does not print the values of integer64 correctly

further limitations

  • subscripting non-existing elements and subscripting with NAs is currently not supported. Such subscripting currently returns 9218868437227407266 instead of NA (the NA value of the underlying double code). Following the full R behaviour here would either destroy performance or require extensive C-coding.

Note

integer64 are useful for handling database keys and exact counting in +-2^63. Do not use them as replacement for 32bit integers, integer64 are not supported for subscripting by R-core and they have different semantics when combined with double. Do understand that integer64 can only be useful over double if we do not coerce it to double.

While
integer + double -> double + double -> double
or
1L + 0.5 -> 1.5
for additive operations we coerce to integer64
integer64 + double -> integer64 + integer64 -> integer64
hence
as.integer64(1) + 0.5 -> 1LL + 0LL -> 1LL

see section "Arithmetic precision and coercion" above

Author(s)

Jens Oehlschlägel <[email protected]> Maintainer: Jens Oehlschlägel <[email protected]>

See Also

integer in base R

Examples

message("Using integer64 in vector")
x <- integer64(8)    # create 64 bit vector
x
is.atomic(x)         # TRUE
is.integer64(x)      # TRUE
is.numeric(x)        # TRUE
is.integer(x)        # FALSE - debatable
is.double(x)         # FALSE - might change
x[] <- 1:2           # assigned value is recycled as usual
x[1:6]               # subscripting as usual
length(x) <- 13      # changing length as usual
x
rep(x, 2)            # replicate as usual
seq(as.integer64(1), 10)     # seq.integer64 is dispatched on first given argument
seq(to=as.integer64(10), 1)  # seq.integer64 is dispatched on first given argument
seq.integer64(along.with=x)  # or call seq.integer64 directly
# c.integer64 is dispatched only if *first* argument is integer64 ...
x <- c(x,runif(length(x), max=100)) 
# ... and coerces everything to integer64 - including double
x                                   
names(x) <- letters  # use names as usual
x

message("Using integer64 in array - note that 'matrix' currently does not work")
message("as.vector.integer64 removed as requested by the CRAN maintainer")
message("as consequence 'array' also does not work anymore")
message("we still can create a matrix or array by assigning 'dim'")
y <- rep(as.integer64(NA), 12)
dim(y) <- c(3,4)
dimnames(y) <- list(letters[1:3], LETTERS[1:4])
y["a",] <- 1:2       # assigning as usual
y
y[1:2,-4]            # subscripting as usual
# cbind.integer64 dispatched on any argument and coerces everything to integer64
cbind(E=1:3, F=runif(3, 0, 100), G=c("-1","0","1"), y)

message("Using integer64 in data.frame")
str(as.data.frame(x))
str(as.data.frame(y))
str(data.frame(y))
str(data.frame(I(y)))
d <- data.frame(x=x, y=runif(length(x), 0, 100))
d
d$x

message("Using integer64 with csv files")
fi64 <- tempfile()
write.csv(d, file=fi64, row.names=FALSE)
e <- read.csv(fi64, colClasses=c("integer64", NA))
unlink(fi64)
str(e)
identical.integer64(d$x,e$x)

message("Serializing and unserializing integer64")
dput(d, fi64)
e <- dget(fi64)
identical.integer64(d$x,e$x)
e <- d[,]
save(e, file=fi64)
rm(e)
load(file=fi64)
identical.integer64(d,e)

### A couple of unit tests follow hidden in a dontshow{} directive ###
  

  ## Not run: 
message("== Differences between integer64 and int64 ==")
require(bit64)
require(int64)

message("-- integer64 is atomic --")
is.atomic(integer64())
#is.atomic(int64())
str(integer64(3))
#str(int64(3))

message("-- The following performance numbers are measured under RWin64  --")
message("-- under RWin32 the advantage of integer64 over int64 is smaller --")

message("-- integer64 needs 7x/5x less RAM than int64 under 64/32 bit OS 
(and twice the RAM of integer as it should be) --")
#as.vector(object.size(int64(1e6))/object.size(integer64(1e6)))
as.vector(object.size(integer64(1e6))/object.size(integer(1e6)))

message("-- integer64 creates 2000x/1300x faster than int64 under 64/32 bit OS
(and 3x the time of integer) --")
t32 <- system.time(integer(1e8))
t64 <- system.time(integer64(1e8))
#T64 <- system.time(int64(1e7))*10  # using 1e8 as above stalls our R on an i7 8 GB RAM Thinkpad
#T64/t64
t64/t32

i32 <- sample(1e6)
d64 <- as.double(i32)

message("-- the following timings are rather conservative since timings
 of integer64 include garbage collection -- due to looped calls")
message("-- integer64 coerces 900x/100x faster than int64 
 under 64/32 bit OS (and 2x the time of coercing to integer) --")
t32 <- system.time(for(i in 1:1000)as.integer(d64))
t64 <- system.time(for(i in 1:1000)as.integer64(d64))
#T64 <- system.time(as.int64(d64))*1000
#T64/t64
t64/t32
td64 <- system.time(for(i in 1:1000)as.double(i32))
t64 <- system.time(for(i in 1:1000)as.integer64(i32))
#T64 <- system.time(for(i in 1:10)as.int64(i32))*100
#T64/t64
t64/td64

message("-- integer64 serializes 4x/0.8x faster than int64 
 under 64/32 bit OS (and less than 2x/6x the time of integer or double) --")
t32 <- system.time(for(i in 1:10)serialize(i32, NULL))
td64 <- system.time(for(i in 1:10)serialize(d64, NULL))
i64 <- as.integer64(i32); 
t64 <- system.time(for(i in 1:10)serialize(i64, NULL))
rm(i64); gc()
#I64 <- as.int64(i32); 
#T64 <- system.time(for(i in 1:10)serialize(I64, NULL))
#rm(I64); gc()
#T64/t64
t64/t32
t64/td64


message("-- integer64 adds 250x/60x faster than int64
 under 64/32 bit OS (and less than 6x the time of integer or double) --")
td64 <- system.time(for(i in 1:100)d64+d64)
t32 <- system.time(for(i in 1:100)i32+i32)
i64 <- as.integer64(i32); 
t64 <- system.time(for(i in 1:100)i64+i64)
rm(i64); gc()
#I64 <- as.int64(i32); 
#T64 <- system.time(for(i in 1:10)I64+I64)*10
#rm(I64); gc()
#T64/t64
t64/t32
t64/td64

message("-- integer64 sums 3x/0.2x faster than int64 
(and at about 5x/60X the time of integer and double) --")
td64 <- system.time(for(i in 1:100)sum(d64))
t32 <- system.time(for(i in 1:100)sum(i32))
i64 <- as.integer64(i32); 
t64 <- system.time(for(i in 1:100)sum(i64))
rm(i64); gc()
#I64 <- as.int64(i32); 
#T64 <- system.time(for(i in 1:100)sum(I64))
#rm(I64); gc()
#T64/t64
t64/t32
t64/td64

message("-- integer64 diffs 5x/0.85x faster than integer and double
(int64 version 1.0 does not support diff) --")
td64 <- system.time(for(i in 1:10)diff(d64, lag=2L, differences=2L))
t32 <- system.time(for(i in 1:10)diff(i32, lag=2L, differences=2L))
i64 <- as.integer64(i32); 
t64 <- system.time(for(i in 1:10)diff(i64, lag=2L, differences=2L))
rm(i64); gc()
t64/t32
t64/td64


message("-- integer64 subscripts 1000x/340x faster than int64
(and at the same speed / 10x slower as integer) --")
ts32 <- system.time(for(i in 1:1000)sample(1e6, 1e3))
t32<- system.time(for(i in 1:1000)i32[sample(1e6, 1e3)])
i64 <- as.integer64(i32); 
t64 <- system.time(for(i in 1:1000)i64[sample(1e6, 1e3)])
rm(i64); gc()
#I64 <- as.int64(i32); 
#T64 <- system.time(for(i in 1:100)I64[sample(1e6, 1e3)])*10
#rm(I64); gc()
#(T64-ts32)/(t64-ts32)
(t64-ts32)/(t32-ts32)

message("-- integer64 assigns 200x/90x faster than int64
(and 50x/160x slower than integer) --")
ts32 <- system.time(for(i in 1:100)sample(1e6, 1e3))
t32 <- system.time(for(i in 1:100)i32[sample(1e6, 1e3)] <- 1:1e3)
i64 <- as.integer64(i32); 
i64 <- system.time(for(i in 1:100)i64[sample(1e6, 1e3)] <- 1:1e3)
rm(i64); gc()
#I64 <- as.int64(i32); 
#I64 <- system.time(for(i in 1:10)I64[sample(1e6, 1e3)] <- 1:1e3)*10
#rm(I64); gc()
#(T64-ts32)/(t64-ts32)
(t64-ts32)/(t32-ts32)


tdfi32 <- system.time(dfi32 <- data.frame(a=i32, b=i32, c=i32))
tdfsi32 <- system.time(dfi32[1e6:1,])
fi32 <- tempfile()
tdfwi32 <- system.time(write.csv(dfi32, file=fi32, row.names=FALSE))
tdfri32 <- system.time(read.csv(fi32, colClasses=rep("integer", 3)))
unlink(fi32)
rm(dfi32); gc()

i64 <- as.integer64(i32); 
tdfi64 <- system.time(dfi64 <- data.frame(a=i64, b=i64, c=i64))
tdfsi64 <- system.time(dfi64[1e6:1,])
fi64 <- tempfile()
tdfwi64 <- system.time(write.csv(dfi64, file=fi64, row.names=FALSE))
tdfri64 <- system.time(read.csv(fi64, colClasses=rep("integer64", 3)))
unlink(fi64)
rm(i64, dfi64); gc()

#I64 <- as.int64(i32); 
#tdfI64 <- system.time(dfI64<-data.frame(a=I64, b=I64, c=I64))
#tdfsI64 <- system.time(dfI64[1e6:1,])
#fI64 <- tempfile()
#tdfwI64 <- system.time(write.csv(dfI64, file=fI64, row.names=FALSE))
#tdfrI64 <- system.time(read.csv(fI64, colClasses=rep("int64", 3)))
#unlink(fI64)
#rm(I64, dfI64); gc()

message("-- integer64 coerces 40x/6x faster to data.frame than int64
(and factor 1/9 slower than integer) --")
#tdfI64/tdfi64
tdfi64/tdfi32
message("-- integer64 subscripts from data.frame 20x/2.5x faster than int64
 (and 3x/13x slower than integer) --")
#tdfsI64/tdfsi64
tdfsi64/tdfsi32
message("-- integer64 csv writes about 2x/0.5x faster than int64
(and about 1.5x/5x slower than integer) --")
#tdfwI64/tdfwi64
tdfwi64/tdfwi32
message("-- integer64 csv reads about 3x/1.5 faster than int64
(and about 2x slower than integer) --")
#tdfrI64/tdfri64
tdfri64/tdfri32

rm(i32, d64); gc()


message("-- investigating the impact on garbage collection: --")
message("-- the fragmented structure of int64 messes up R's RAM --")
message("-- and slows down R's gargbage collection just by existing --")

td32 <- double(21)
td32[1] <- system.time(d64 <- double(1e7))[3]
for (i in 2:11)td32[i] <- system.time(gc(), gcFirst=FALSE)[3]
rm(d64)
for (i in 12:21)td32[i] <- system.time(gc(), gcFirst=FALSE)[3]

t64 <- double(21)
t64[1] <- system.time(i64 <- integer64(1e7))[3]
for (i in 2:11)t64[i] <- system.time(gc(), gcFirst=FALSE)[3]
rm(i64)
for (i in 12:21)t64[i] <- system.time(gc(), gcFirst=FALSE)[3]

#T64 <- double(21)
#T64[1] <- system.time(I64 <- int64(1e7))[3]
#for (i in 2:11)T64[i] <- system.time(gc(), gcFirst=FALSE)[3]
#rm(I64)
#for (i in 12:21)T64[i] <- system.time(gc(), gcFirst=FALSE)[3]

#matplot(1:21, cbind(td32, t64, T64), pch=c("d","i","I"), log="y")
matplot(1:21, cbind(td32, t64), pch=c("d","i"), log="y")
  
## End(Not run)

Test if two integer64 vectors are all.equal

Description

A utility to compare integer64 objects 'x' and 'y' testing for ‘near equality’, see all.equal.

Usage

## S3 method for class 'integer64'
all.equal(
  target
, current
, tolerance = sqrt(.Machine$double.eps)
, scale = NULL
, countEQ = FALSE
, formatFUN = function(err, what) format(err)
, ...
, check.attributes = TRUE
)

Arguments

target

a vector of 'integer64' or an object that can be coerced with as.integer64

current

a vector of 'integer64' or an object that can be coerced with as.integer64

tolerance

numeric \ge 0. Differences smaller than tolerance are not reported. The default value is close to 1.5e-8.

scale

NULL or numeric > 0, typically of length 1 or length(target). See ‘Details’.

countEQ

logical indicating if the target == current cases should be counted when computing the mean (absolute or relative) differences. The default, FALSE may seem misleading in cases where target and current only differ in a few places; see the extensive example.

formatFUN

a function of two arguments, err, the relative, absolute or scaled error, and what, a character string indicating the kind of error; maybe used, e.g., to format relative and absolute errors differently.

...

further arguments are ignored

check.attributes

logical indicating if the attributes of target and current (other than the names) should be compared.

Details

In all.equal.numeric the type integer is treated as a proper subset of double i.e. does not complain about comparing integer with double. Following this logic all.equal.integer64 treats integer as a proper subset of integer64 and does not complain about comparing integer with integer64. double also compares without warning as long as the values are within lim.integer64, if double are bigger all.equal.integer64 complains about the all.equal.integer64 overflow warning. For further details see all.equal.

Value

Either ‘TRUE’ (‘NULL’ for ‘attr.all.equal’) or a vector of ‘mode’ ‘"character"’ describing the differences between ‘target’ and ‘current’.

Note

all.equal only dispatches to this method if the first argument is integer64, calling all.equal with a non-integer64 first and a integer64 second argument gives undefined behavior!

Author(s)

Leonardo Silvestri (for package nanotime)

See Also

all.equal

Examples

all.equal(as.integer64(1:10), as.integer64(0:9))
  all.equal(as.integer64(1:10), as.integer(1:10))
  all.equal(as.integer64(1:10), as.double(1:10))
  all.equal(as.integer64(1), as.double(1e300))

Coerce from integer64

Description

Methods to coerce integer64 to other atomic types. 'as.bitstring' coerces to a human-readable bit representation (strings of zeroes and ones). The methods format, as.character, as.double, as.logical, as.integer do what you would expect.

Usage

as.bitstring(x, ...)
 ## S3 method for class 'integer64'
as.bitstring(x, ...)
 ## S3 method for class 'bitstring'
print(x, ...)
 ## S3 method for class 'integer64'
as.character(x, ...)
 ## S3 method for class 'integer64'
as.double(x, keep.names = FALSE, ...)
 ## S3 method for class 'integer64'
as.integer(x, ...)
 ## S3 method for class 'integer64'
as.logical(x, ...)
 ## S3 method for class 'integer64'
as.factor(x)
 ## S3 method for class 'integer64'
as.ordered(x)

Arguments

x

an integer64 vector

keep.names

FALSE, set to TRUE to keep a names vector

...

further arguments to the NextMethod

Value

as.bitstring returns a string of class 'bitstring'.
The other methods return atomic vectors of the expected types

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

as.integer64.character integer64

Examples

as.character(lim.integer64())
  as.bitstring(lim.integer64())
  as.bitstring(as.integer64(c(
   -2,-1,NA,0:2
  )))

integer64: Coercing to data.frame column

Description

Coercing integer64 vector to data.frame.

Usage

## S3 method for class 'integer64'
as.data.frame(x, ...)

Arguments

x

an integer64 vector

...

passed to NextMethod as.data.frame after removing the 'integer64' class attribute

Details

'as.data.frame.integer64' is rather not intended to be called directly, but it is required to allow integer64 as data.frame columns.

Value

a one-column data.frame containing an integer64 vector

Note

This is currently very slow – any ideas for improvement?

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

cbind.integer64 integer64

Examples

as.data.frame.integer64(as.integer64(1:12))
  data.frame(a=1:12, b=as.integer64(1:12))

Coerce to integer64

Description

Methods to coerce from other atomic types to integer64.

Usage

NA_integer64_
 as.integer64(x, ...)
 ## S3 method for class 'integer64'
as.integer64(x, ...)
 ## S3 method for class 'NULL'
as.integer64(x, ...)
 ## S3 method for class 'character'
as.integer64(x, ...)
 ## S3 method for class 'bitstring'
as.integer64(x, ...)
 ## S3 method for class 'double'
as.integer64(x, keep.names = FALSE, ...)
 ## S3 method for class 'integer'
as.integer64(x, ...)
 ## S3 method for class 'logical'
as.integer64(x, ...)
 ## S3 method for class 'factor'
as.integer64(x, ...)

Arguments

x

an atomic vector

keep.names

FALSE, set to TRUE to keep a names vector

...

further arguments to the NextMethod

Details

as.integer64.character is realized using C function strtoll which does not support scientific notation. Instead of '1e6' use '1000000'. as.integer64.bitstring evaluates characters '0' anbd ' ' as zero-bit, all other one byte characters as one-bit, multi-byte characters are not allowed, strings shorter than 64 characters are treated as if they were left-padded with '0', strings longer than 64 bytes are mapped to NA_INTEGER64 and a warning is emitted.

Value

The other methods return atomic vectors of the expected types

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

as.character.integer64 integer64

Examples

as.integer64(as.character(lim.integer64()))
as.integer64(
  structure(c("1111111111111111111111111111111111111111111111111111111111111110", 
              "1111111111111111111111111111111111111111111111111111111111111111", 
              "1000000000000000000000000000000000000000000000000000000000000000",
              "0000000000000000000000000000000000000000000000000000000000000000", 
              "0000000000000000000000000000000000000000000000000000000000000001", 
              "0000000000000000000000000000000000000000000000000000000000000010" 
  ), class = "bitstring")
)
as.integer64(
 structure(c("............................................................... ", 
             "................................................................", 
             ".                                                               ",
             "", 
             ".", 
             "10"
  ), class = "bitstring")
)

Function for measuring algorithmic performance
of high-level and low-level integer64 functions

Description

benchmark64 compares high-level integer64 functions against the integer functions from Base R
optimizer64 compares for each high-level integer64 function the Base R integer function with several low-level integer64 functions with and without caching

Usage

benchmark64(nsmall = 2^16, nbig = 2^25, timefun = repeat.time
)
optimizer64(nsmall = 2^16, nbig = 2^25, timefun = repeat.time
, what = c("match", "%in%", "duplicated", "unique", "unipos", "table", "rank", "quantile")
, uniorder = c("original", "values", "any")
, taborder = c("values", "counts")
, plot = TRUE
)

Arguments

nsmall

size of smaller vector

nbig

size of larger bigger vector

timefun

a function for timing such as repeat.time or system.time

what

a vector of names of high-level functions

uniorder

one of the order parameters that are allowed in unique.integer64 and unipos.integer64

taborder

one of the order parameters that are allowed in table.integer64

plot

set to FALSE to suppress plotting

Details

benchmark64 compares the following scenarios for the following use cases:

scenario name explanation
32-bit applying Base R function to 32-bit integer data
64-bit applying bit64 function to 64-bit integer data (with no cache)
hashcache dito when cache contains hashmap, see hashcache
sortordercache dito when cache contains sorting and ordering, see sortordercache
ordercache dito when cache contains ordering only, see ordercache
allcache dito when cache contains sorting, ordering and hashing
use case name explanation
cache filling the cache according to scenario
match(s,b) match small in big vector
s %in% b small %in% big vector
match(b,s) match big in small vector
b %in% s big %in% small vector
match(b,b) match big in (different) big vector
b %in% b big %in% (different) big vector
duplicated(b) duplicated of big vector
unique(b) unique of big vector
table(b) table of big vector
sort(b) sorting of big vector
order(b) ordering of big vector
rank(b) ranking of big vector
quantile(b) quantiles of big vector
summary(b) summary of of big vector
SESSION exemplary session involving multiple calls (including cache filling costs)

Note that the timings for the cached variants do not contain the time costs of building the cache, except for the timing of the exemplary user session, where the cache costs are included in order to evaluate amortization.

Value

benchmark64 returns a matrix with elapsed seconds, different high-level tasks in rows and different scenarios to solve the task in columns. The last row named 'SESSION' contains the elapsed seconds of the exemplary sesssion.
optimizer64 returns a dimensioned list with one row for each high-level function timed and two columns named after the values of the nsmall and nbig sample sizes. Each list cell contains a matrix with timings, low-level-methods in rows and three measurements c("prep","both","use") in columns. If it can be measured separately, prep contains the timing of preparatory work such as sorting and hashing, and use contains the timing of using the prepared work. If the function timed does both, preparation and use, the timing is in both.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

integer64

Examples

message("this small example using system.time does not give serious timings\n
this we do this only to run regression tests")
benchmark64(nsmall=2^7, nbig=2^13, timefun=function(expr)system.time(expr, gcFirst=FALSE))
optimizer64(nsmall=2^7, nbig=2^13, timefun=function(expr)system.time(expr, gcFirst=FALSE)
, plot=FALSE
)
## Not run: 
message("for real measurement of sufficiently large datasets run this on your machine")
benchmark64()
optimizer64()

## End(Not run)
message("let's look at the performance results on Core i7 Lenovo T410 with 8 GB RAM")
data(benchmark64.data)
print(benchmark64.data)

matplot(log2(benchmark64.data[-1,1]/benchmark64.data[-1,])
, pch=c("3", "6", "h", "s", "o", "a") 
, xlab="tasks [last=session]"
, ylab="log2(relative speed) [bigger is better]"
)
matplot(t(log2(benchmark64.data[-1,1]/benchmark64.data[-1,]))
, type="b", axes=FALSE 
, lwd=c(rep(1, 14), 3)
, xlab="context"
, ylab="log2(relative speed) [bigger is better]"
)
axis(1
, labels=c("32-bit", "64-bit", "hash", "sortorder", "order", "hash+sortorder")
, at=1:6
)
axis(2)
data(optimizer64.data)
print(optimizer64.data)
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(2,1))
par(cex=0.7)
for (i in 1:nrow(optimizer64.data)){
 for (j in 1:2){
   tim <- optimizer64.data[[i,j]]
  barplot(t(tim))
  if (rownames(optimizer64.data)[i]=="match")
   title(paste("match", colnames(optimizer64.data)[j], "in", colnames(optimizer64.data)[3-j]))
  else if (rownames(optimizer64.data)[i]=="%in%")
   title(paste(colnames(optimizer64.data)[j], "%in%", colnames(optimizer64.data)[3-j]))
  else
   title(paste(rownames(optimizer64.data)[i], colnames(optimizer64.data)[j]))
 }
}
par(mfrow=c(1,1))

Results of performance measurement on a Core i7 Lenovo T410 8 GB RAM under Windows 7 64bit

Description

These are the results of calling benchmark64

Usage

data(benchmark64.data)

Format

The format is: num [1:16, 1:6] 2.55e-05 2.37 2.39 1.28 1.39 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:16] "cache" "match(s,b)" "s %in% b" "match(b,s)" ... ..$ : chr [1:6] "32-bit" "64-bit" "hashcache" "sortordercache" ...

Examples

data(benchmark64.data)
print(benchmark64.data)
matplot(log2(benchmark64.data[-1,1]/benchmark64.data[-1,])
, pch=c("3", "6", "h", "s", "o", "a")
, xlab="tasks [last=session]"
, ylab="log2(relative speed) [bigger is better]"
)
matplot(t(log2(benchmark64.data[-1,1]/benchmark64.data[-1,]))
, axes=FALSE
, type="b"
, lwd=c(rep(1, 14), 3)
, xlab="context"
, ylab="log2(relative speed) [bigger is better]"
)
axis(1
, labels=c("32-bit", "64-bit", "hash", "sortorder", "order", "hash+sortorder")
, at=1:6
)
axis(2)

Turning base R functions into S3 generics for bit64

Description

Turn those base functions S3 generic which are used in bit64

Usage

from:to
 #--as-cran complains about \method{:}{default}(from, to)
 #--as-cran complains about \method{:}{integer64}(from, to)
	is.double(x)
 ## Default S3 method:
is.double(x)
 ## S3 method for class 'integer64'
is.double(x)
	match(x, table, ...)
 ## Default S3 method:
match(x, table, ...)
	x %in% table
 ## Default S3 method:
x %in% table
	rank(x, ...)
 ## Default S3 method:
rank(x, ...)
	
 
	order(...)
 ## Default S3 method:
order(...)

Arguments

x

integer64 vector: the values to be matched, optionally carrying a cache created with hashcache

table

integer64 vector: the values to be matched against, optionally carrying a cache created with hashcache or sortordercache

from

scalar denoting first element of sequence

to

scalar denoting last element of sequence

...

ignored

Details

The following functions are turned into S3 gernerics in order to dispatch methods for integer64:

	   \code{\link{:}}
	   \code{\link{is.double}}
	   \code{\link{match}}
	   \code{\link{%in%}}
	   
	   \code{\link{rank}}
	   \code{\link{order}}
   

Value

invisible

Note

is.double returns FALSE for integer64
: currently only dispatches at its first argument, thus as.integer64(1):9 works but 1:as.integer64(9) doesn't match currently only dispatches at its first argument and expects its second argument also to be integer64, otherwise throws an error. Beware of something like match(2, as.integer64(0:3)) %in% currently only dispatches at its first argument and expects its second argument also to be integer64, otherwise throws an error. Beware of something like 2 %in% as.integer64(0:3) order currently only orders a single argument, trying more than one raises an error

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

bit64, S3

Examples

is.double(as.integer64(1))
	as.integer64(1):9
 match(as.integer64(2), as.integer64(0:3))
 as.integer64(2) %in% as.integer64(0:3)
 
 unique(as.integer64(c(1,1,2)))
 rank(as.integer64(c(1,1,2)))
 
 
 
 
 
 
 order(as.integer64(c(1,NA,2)))

Concatenating integer64 vectors

Description

The ususal functions 'c', 'cbind' and 'rbind'

Usage

## S3 method for class 'integer64'
c(..., recursive = FALSE)
## S3 method for class 'integer64'
cbind(...)
## S3 method for class 'integer64'
rbind(...)

Arguments

...

two or more arguments coerced to 'integer64' and passed to NextMethod

recursive

logical. If recursive = TRUE, the function recursively descends through lists (and pairlists) combining all their elements into a vector.

Value

c returns a integer64 vector of the total length of the input
cbind and rbind return a integer64 matrix

Note

R currently only dispatches generic 'c' to method 'c.integer64' if the first argument is 'integer64'

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

rep.integer64 seq.integer64 as.data.frame.integer64 integer64

Examples

c(as.integer64(1), 2:6)
  cbind(1:6, as.integer(1:6))
  rbind(1:6, as.integer(1:6))

Atomic Caching

Description

Functions for caching results attached to atomic objects

Usage

newcache(x)
jamcache(x)
cache(x)
setcache(x, which, value)
getcache(x, which)
remcache(x)
## S3 method for class 'cache'
print(x, all.names = FALSE, pattern, ...)

Arguments

x

an integer64 vector (or a cache object in case of print.cache)

which

A character naming the object to be retrieved from the cache or to be stored in the cache

value

An object to be stored in the cache

all.names

passed to ls when listing the cache content

pattern

passed to ls when listing the cache content

...

ignored

Details

A cache is an link{environment} attached to an atomic object with the link{attrib} name 'cache'. It contains at least a reference to the atomic object that carries the cache. This is used when accessing the cache to detect whether the object carrying the cache has been modified meanwhile. Function newcache(x) creates a new cache referencing x
Function jamcache(x) forces x to have a cache
Function cache(x) returns the cache attached to x if it is not found to be outdated
Function setcache(x, which, value) assigns a value into the cache of x
Function getcache(x, which) gets cache value 'which' from x
Function remcache removes the cache from x

Value

see details

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

still.identical for testing whether to symbols point to the same RAM.
Functions that get and set small cache-content automatically when a cache is present: na.count, nvalid, is.sorted, nunique and nties
Setting big caches with a relevant memory footprint requires a conscious decision of the user: hashcache, sortcache, ordercache and sortordercache
Functions that use big caches: match.integer64, %in%.integer64, duplicated.integer64, unique.integer64, unipos, table.integer64, as.factor.integer64, as.ordered.integer64, keypos, tiepos, rank.integer64, prank, qtile, quantile.integer64, median.integer64 and summary.integer64

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
	y <- x
	still.identical(x,y)
	y[1] <- NA
	still.identical(x,y)
	mycache <- newcache(x)
	ls(mycache)
	mycache
	rm(mycache)
	jamcache(x)
	cache(x)
	x[1] <- NA
	cache(x)
	getcache(x, "abc")
	setcache(x, "abc", 1)
	getcache(x, "abc")
	remcache(x)
	cache(x)

Cumulative Sums, Products, Extremes and lagged differences

Description

Cumulative Sums, Products, Extremes and lagged differences

Usage

## S3 method for class 'integer64'
cummin(x)
## S3 method for class 'integer64'
cummax(x)
## S3 method for class 'integer64'
cumsum(x)
## S3 method for class 'integer64'
cumprod(x)
## S3 method for class 'integer64'
diff(x, lag = 1L, differences = 1L, ...)

Arguments

x

an atomic vector of class 'integer64'

lag

see diff

differences

see diff

...

ignored

Value

cummin, cummax , cumsum and cumprod return a integer64 vector of the same length as their input
diff returns a integer64 vector shorter by lag*differences elements

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

sum.integer64 integer64

Examples

cumsum(rep(as.integer64(1), 12))
  diff(as.integer64(c(0,1:12)))
  cumsum(as.integer64(c(0, 1:12)))
  diff(cumsum(as.integer64(c(0,0,1:12))), differences=2)

Determine Duplicate Elements of integer64

Description

duplicated() determines which elements of a vector or data frame are duplicates of elements with smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

Usage

## S3 method for class 'integer64'
duplicated(x, incomparables = FALSE, nunique = NULL, method = NULL, ...)

Arguments

x

a vector or a data frame or an array or NULL.

incomparables

ignored

nunique

NULL or the number of unique values (including NA). Providing nunique can speed-up matching when x has no cache. Note that a wrong nunique can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache.

Suitable methods are hashdup (hashing), sortorderdup (fast ordering) and orderdup (memory saving ordering).

Value

duplicated(): a logical vector of the same length as x.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

duplicated, unique.integer64

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
duplicated(x)

stopifnot(identical(duplicated(x),  duplicated(as.integer(x))))

Extract or Replace Parts of an integer64 vector

Description

Methods to extract and replace parts of an integer64 vector.

Usage

## S3 method for class 'integer64'
x[i, ...]
 ## S3 replacement method for class 'integer64'
x[...] <- value 
 ## S3 method for class 'integer64'
x[[...]]
 ## S3 replacement method for class 'integer64'
x[[...]] <- value

Arguments

x

an atomic vector

i

indices specifying elements to extract

value

an atomic vector with values to be assigned

...

further arguments to the NextMethod

Value

A vector or scalar of class 'integer64'

Note

You should not subscript non-existing elements and not use NAs as subscripts. The current implementation returns 9218868437227407266 instead of NA.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

[ integer64

Examples

as.integer64(1:12)[1:3]
  x <- as.integer64(1:12)
  dim(x) <- c(3,4)
  x
  x[]
  x[,2:3]

Unary operators and functions for integer64 vectors

Description

Unary operators and functions for integer64 vectors.

Usage

## S3 method for class 'integer64'
format(x, justify="right", ...)
## S3 method for class 'integer64'
is.na(x)
## S3 method for class 'integer64'
is.nan(x)
## S3 method for class 'integer64'
is.finite(x)
## S3 method for class 'integer64'
is.infinite(x)
## S3 method for class 'integer64'
!x
## S3 method for class 'integer64'
sign(x)
## S3 method for class 'integer64'
abs(x)
## S3 method for class 'integer64'
sqrt(x)
## S3 method for class 'integer64'
log(x, base)
## S3 method for class 'integer64'
log2(x)
## S3 method for class 'integer64'
log10(x)
## S3 method for class 'integer64'
floor(x)
## S3 method for class 'integer64'
ceiling(x)
## S3 method for class 'integer64'
trunc(x, ...)
## S3 method for class 'integer64'
round(x, digits=0)
## S3 method for class 'integer64'
signif(x, digits=6)
## S3 method for class 'integer64'
scale(x, center = TRUE, scale = TRUE)

Arguments

x

an atomic vector of class 'integer64'

base

an atomic scalar (we save 50% log-calls by not allowing a vector base)

digits

integer indicating the number of decimal places (round) or significant digits (signif) to be used. Negative values are allowed (see round)

justify

should it be right-justified (the default), left-justified, centred or left alone.

center

see scale

scale

see scale

...

further arguments to the NextMethod

Value

format returns a character vector
is.na and ! return a logical vector
sqrt, log, log2 and log10 return a double vector
sign, abs, floor, ceiling, trunc and round return a vector of class 'integer64'
signif is not implemented

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

xor.integer64 integer64

Examples

sqrt(as.integer64(1:12))

Big caching of hashing, sorting, ordering

Description

Functions to create cache that accelerates many operations

Usage

hashcache(x, nunique=NULL, ...)
sortcache(x, has.na = NULL)
sortordercache(x, has.na = NULL, stable = NULL)
ordercache(x, has.na = NULL, stable = NULL, optimize = "time")

Arguments

x

an atomic vector (note that currently only integer64 is supported)

nunique

giving correct number of unique elements can help reducing the size of the hashmap

has.na

boolean scalar defining whether the input vector might contain NAs. If we know we don't have NAs, this may speed-up. Note that you risk a crash if there are unexpected NAs with has.na=FALSE

stable

boolean scalar defining whether stable sorting is needed. Allowing non-stable may speed-up.

optimize

by default ramsort optimizes for 'time' which requires more RAM, set to 'memory' to minimize RAM requirements and sacrifice speed

...

passed to hashmap

Details

The result of relative expensive operations hashmap, ramsort, ramsortorder and ramorder can be stored in a cache in order to avoid multiple excutions. Unless in very specific situations, the recommended method is hashsortorder only.

Value

x with a cache that contains the result of the expensive operations, possible together with small derived information (such as nunique.integer64) and previously cached results.

Note

Note that we consider storing the big results from sorting and/or ordering as a relevant side-effect, and therefore storing them in the cache should require a conscious decision of the user.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

cache for caching functions and nunique for methods bennefitting from small caches

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
 sortordercache(x)

Hashing for 64bit integers

Description

This is an explicit implementation of hash functionality that underlies matching and other functions in R. Explicit means that you can create, store and use hash functionality directly. One advantage is that you can re-use hashmaps, which avoid re-building hashmaps again and again.

Usage

hashfun(x, ...)
## S3 method for class 'integer64'
hashfun(x, minfac=1.41, hashbits=NULL, ...)
hashmap(x, ...)
## S3 method for class 'integer64'
hashmap(x, nunique=NULL, minfac=1.41, hashbits=NULL, cache=NULL, ...)
hashpos(cache, ...)
## S3 method for class 'cache_integer64'
hashpos(cache, x, nomatch = NA_integer_, ...)
hashrev(cache, ...)
## S3 method for class 'cache_integer64'
hashrev(cache, x, nomatch = NA_integer_, ...)
hashfin(cache, ...)
## S3 method for class 'cache_integer64'
hashfin(cache, x, ...)
hashrin(cache, ...)
## S3 method for class 'cache_integer64'
hashrin(cache, x, ...)
hashdup(cache, ...)
## S3 method for class 'cache_integer64'
hashdup(cache, ...)
hashuni(cache, ...)
## S3 method for class 'cache_integer64'
hashuni(cache, keep.order=FALSE, ...)
hashmapuni(x, ...)
## S3 method for class 'integer64'
hashmapuni(x, nunique=NULL, minfac=1.5, hashbits=NULL, ...)
hashupo(cache, ...)
## S3 method for class 'cache_integer64'
hashupo(cache, keep.order=FALSE, ...)
hashmapupo(x, ...)
## S3 method for class 'integer64'
hashmapupo(x, nunique=NULL, minfac=1.5, hashbits=NULL, ...)
hashtab(cache, ...)
## S3 method for class 'cache_integer64'
hashtab(cache, ...)
hashmaptab(x, ...)
## S3 method for class 'integer64'
hashmaptab(x, nunique=NULL, minfac=1.5, hashbits=NULL, ...)

Arguments

x

an integer64 vector

hashmap

an object of class 'hashmap' i.e. here 'cache_integer64'

minfac

minimum factor by which the hasmap has more elements compared to the data x, ignored if hashbits is given directly

hashbits

length of hashmap is 2^hashbits

cache

an optional cache object into which to put the hashmap (by default a new cache is created)

nunique

giving correct number of unique elements can help reducing the size of the hashmap

nomatch

the value to be returned if an element is not found in the hashmap

keep.order

determines order of results and speed: FALSE (the default) is faster and returns in the (pseudo)random order of the hash function, TRUE returns in the order of first appearance in the original data, but this requires extra work

...

further arguments, passed from generics, ignored in methods

Details

function see also description
hashfun digest export of the hash function used in hashmap
hashmap match return hashmap
hashpos match return positions of x in hashmap
hashrev match return positions of hashmap in x
hashfin %in%.integer64 return logical whether x is in hashmap
hashrin %in%.integer64 return logical whether hashmap is in x
hashdup duplicated return logical whether hashdat is duplicated using hashmap
hashuni unique return unique values of hashmap
hashmapuni unique return unique values of x
hashupo unique return positions of unique values in hashdat
hashmapupo unique return positions of unique values in x
hashtab table tabulate values of hashdat using hashmap in keep.order=FALSE
hashmaptab table tabulate values of x building hasmap on the fly in keep.order=FALSE

Value

see details

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

match, runif64

Examples

x <- as.integer64(sample(c(NA, 0:9)))
y <- as.integer64(sample(c(NA, 1:9), 10, TRUE))
hashfun(y)
hx <- hashmap(x)
hy <- hashmap(y)
ls(hy)
hashpos(hy, x)
hashrev(hx, y)
hashfin(hy, x)
hashrin(hx, y)
hashdup(hy)
hashuni(hy)
hashuni(hy, keep.order=TRUE)
hashmapuni(y)
hashupo(hy)
hashupo(hy, keep.order=TRUE)
hashmapupo(y)
hashtab(hy)
hashmaptab(y)

stopifnot(identical(match(as.integer(x),as.integer(y)),hashpos(hy, x)))
stopifnot(identical(match(as.integer(x),as.integer(y)),hashrev(hx, y)))
stopifnot(identical(as.integer(x) %in% as.integer(y), hashfin(hy, x)))
stopifnot(identical(as.integer(x) %in% as.integer(y), hashrin(hx, y)))
stopifnot(identical(duplicated(as.integer(y)), hashdup(hy)))
stopifnot(identical(as.integer64(unique(as.integer(y))), hashuni(hy, keep.order=TRUE)))
stopifnot(identical(sort(hashuni(hy, keep.order=FALSE)), sort(hashuni(hy, keep.order=TRUE))))
stopifnot(identical(y[hashupo(hy, keep.order=FALSE)], hashuni(hy, keep.order=FALSE)))
stopifnot(identical(y[hashupo(hy, keep.order=TRUE)], hashuni(hy, keep.order=TRUE)))
stopifnot(identical(hashpos(hy, hashuni(hy, keep.order=TRUE)), hashupo(hy, keep.order=TRUE)))
stopifnot(identical(hashpos(hy, hashuni(hy, keep.order=FALSE)), hashupo(hy, keep.order=FALSE)))
stopifnot(identical(hashuni(hy, keep.order=FALSE), hashtab(hy)$values))
stopifnot(identical(as.vector(table(as.integer(y), useNA="ifany"))
, hashtab(hy)$counts[order.integer64(hashtab(hy)$values)]))
stopifnot(identical(hashuni(hy, keep.order=TRUE), hashmapuni(y)))
stopifnot(identical(hashupo(hy, keep.order=TRUE), hashmapupo(y)))
stopifnot(identical(hashtab(hy), hashmaptab(y)))

	## Not run: 
	message("explore speed given size of the hasmap in 2^hashbits and size of the data")
	message("more hashbits means more random access and less collisions")
	message("i.e. more data means less random access and more collisions")
	bits <- 24
	b <- seq(-1, 0, 0.1)
	tim <- matrix(NA, length(b), 2, dimnames=list(b, c("bits","bits+1")))
    for (i in 1:length(b)){
	  n <- as.integer(2^(bits+b[i]))
	  x <- as.integer64(sample(n))
	  tim[i,1] <- repeat.time(hashmap(x, hashbits=bits))[3]
	  tim[i,2] <- repeat.time(hashmap(x, hashbits=bits+1))[3]
	  print(tim)
      matplot(b, tim)
	}
	message("we conclude that n*sqrt(2) is enough to avoid collisions")
	
## End(Not run)

Identity function for class 'integer64'

Description

This will discover any deviation between objects containing integer64 vectors.

Usage

identical.integer64(x, y, num.eq = FALSE, single.NA = FALSE
, attrib.as.set = TRUE, ignore.bytecode = TRUE)

Arguments

x

atomic vector of class 'integer64'

y

atomic vector of class 'integer64'

num.eq

see identical

single.NA

see identical

attrib.as.set

see identical

ignore.bytecode

see identical

Details

This is simply a wrapper to identical with default arguments num.eq = FALSE, single.NA = FALSE.

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

==.integer64 identical integer64

Examples

i64 <- as.double(NA); class(i64) <- "integer64"
  identical(i64-1, i64+1)
  identical.integer64(i64-1, i64+1)

Small cache access methods

Description

These methods are packaged here for methods in packages bit64 and ff.

Usage

## S3 method for class 'integer64'
is.sorted(x, ...)
	## S3 method for class 'integer64'
na.count(x, ...)
	## S3 method for class 'integer64'
nvalid(x, ...)
	## S3 method for class 'integer64'
nunique(x, ...)
	## S3 method for class 'integer64'
nties(x, ...)

Arguments

x

some object

...

ignored

Details

All these functions benefit from a sortcache, ordercache or sortordercache. na.count, nvalid and nunique also benefit from a hashcache.
is.sorted checks for sortedness of x (NAs sorted first)
na.count returns the number of NAs
nvalid returns the number of valid data points, usually length minus na.count.
nunique returns the number of unique values
nties returns the number of tied values.

Value

is.sorted returns a logical scalar, the other methods return an integer scalar.

Note

If a cache exists but the desired value is not cached, then these functions will store their result in the cache. We do not consider this a relevant side-effect, since these small cache results do not have a relevant memory footprint.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

cache for caching functions and sortordercache for functions creating big caches

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
 length(x)
 na.count(x)
 nvalid(x)
 nunique(x)
 nties(x)
 table.integer64(x)
 x

Extract Positions in redundant dimension table

Description

keypos returns the positions of the (fact table) elements that participate in their sorted unique subset (dimension table)

Usage

keypos(x, ...)
## S3 method for class 'integer64'
keypos(x, method = NULL, ...)

Arguments

x

a vector or a data frame or an array or NULL.

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

NAs are sorted first in the dimension table, see ramorder.integer64.
This function automatically chooses from several low-level functions considering the size of x and the availability of a cache. Suitable methods are sortorderkey (fast ordering) and orderkey (memory saving ordering).

Value

an integer vector of the same length as codex containing positions relativ to codesort(unique(x), na.last=FALSE)

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

unique.integer64 for the unique subset and match.integer64 for finding positions in a different vector.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
keypos(x)

stopifnot(identical(keypos(x),  match.integer64(x, sort(unique(x), na.last=FALSE))))

64-bit integer matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%in% is a more intuitive interface as a binary operator, which returns a logical vector indicating if there is a match or not for its left operand.

Usage

## S3 method for class 'integer64'
match(x, table, nomatch = NA_integer_, nunique = NULL, method = NULL, ...)
## S3 method for class 'integer64'
x %in% table, ...

Arguments

x

integer64 vector: the values to be matched, optionally carrying a cache created with hashcache

table

integer64 vector: the values to be matched against, optionally carrying a cache created with hashcache or sortordercache

nomatch

the value to be returned in the case when no match is found. Note that it is coerced to integer.

nunique

NULL or the number of unique values of table (including NA). Providing nunique can speed-up matching when table has no cache. Note that a wrong nunique can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

These functions automatically choose from several low-level functions considering the size of x and table and the availability of caches.

Suitable methods for %in%.integer64 are hashpos (hash table lookup), hashrev (reverse lookup), sortorderpos (fast ordering) and orderpos (memory saving ordering). Suitable methods for match.integer64 are hashfin (hash table lookup), hashrin (reverse lookup), sortfin (fast sorting) and orderfin (memory saving ordering).

Value

A vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match, otherwise nomatch.

If x[i] is found to equal table[j] then the value returned in the i-th position of the return value is j, for the smallest possible j. If no match is found, the value is nomatch.

%in%: A logical vector, indicating if a match was located for each element of x: thus the values are TRUE or FALSE and never NA.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

match

Examples

x <- as.integer64(c(NA, 0:9), 32)
table <- as.integer64(c(1:9, NA))
match.integer64(x, table)
"%in%.integer64"(x, table)

x <- as.integer64(sample(c(rep(NA, 9), 0:9), 32, TRUE))
table <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
stopifnot(identical(match.integer64(x, table), match(as.integer(x), as.integer(table))))
stopifnot(identical("%in%.integer64"(x, table), as.integer(x) %in% as.integer(table)))

## Not run: 
	message("check when reverse hash-lookup beats standard hash-lookup")
	e <- 4:24
	timx <- timy <- matrix(NA, length(e), length(e), dimnames=list(e,e))
	for (iy in seq_along(e))
	for (ix in 1:iy){
		nx <- 2^e[ix]
		ny <- 2^e[iy]
		x <- as.integer64(sample(ny, nx, FALSE))
		y <- as.integer64(sample(ny, ny, FALSE))
		#hashfun(x, bits=as.integer(5))
		timx[ix,iy] <- repeat.time({
		hx <- hashmap(x)
		py <- hashrev(hx, y)
		})[3]
		timy[ix,iy] <- repeat.time({
		hy <- hashmap(y)
		px <- hashpos(hy, x)
		})[3]
		#identical(px, py)
		print(round(timx[1:iy,1:iy]/timy[1:iy,1:iy], 2), na.print="")
	}

	message("explore best low-level method given size of x and table")
	B1 <- 1:27
	B2 <- 1:27
	tim <- array(NA, dim=c(length(B1), length(B2), 5)
 , dimnames=list(B1, B2, c("hashpos","hashrev","sortpos1","sortpos2","sortpos3")))
	for (i1 in B1)
	for (i2 in B2)
	{
	  b1 <- B1[i1]
	  b2 <- B1[i2]
	  n1 <- 2^b1
	  n2 <- 2^b2
	  x1 <- as.integer64(c(sample(n2, n1-1, TRUE), NA))
	  x2 <- as.integer64(c(sample(n2, n2-1, TRUE), NA))
	  tim[i1,i2,1] <- repeat.time({h <- hashmap(x2);hashpos(h, x1);rm(h)})[3]
	  tim[i1,i2,2] <- repeat.time({h <- hashmap(x1);hashrev(h, x2);rm(h)})[3]
	  s <- clone(x2); o <- seq_along(s); ramsortorder(s, o)
	  tim[i1,i2,3] <- repeat.time(sortorderpos(s, o, x1, method=1))[3]
	  tim[i1,i2,4] <- repeat.time(sortorderpos(s, o, x1, method=2))[3]
	  tim[i1,i2,5] <- repeat.time(sortorderpos(s, o, x1, method=3))[3]
	  rm(s,o)
	  print(apply(tim, 1:2, function(ti)if(any(is.na(ti)))NA else which.min(ti)))
	}

## End(Not run)

Results of performance measurement on a Core i7 Lenovo T410 8 GB RAM under Windows 7 64bit

Description

These are the results of calling optimizer64

Usage

data(optimizer64.data)

Format

The format is: List of 16 $ : num [1:9, 1:3] 0 0 1.63 0.00114 2.44 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:9] "match" "match.64" "hashpos" "hashrev" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:10, 1:3] 0 0 0 1.62 0.00114 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:10] "%in%" "match.64" "%in%.64" "hashfin" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:10, 1:3] 0 0 0.00105 0.00313 0.00313 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:10] "duplicated" "duplicated.64" "hashdup" "sortorderdup1" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:15, 1:3] 0 0 0 0.00104 0.00104 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:15] "unique" "unique.64" "hashmapuni" "hashuni" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:14, 1:3] 0 0 0 0.000992 0.000992 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:14] "unique" "unipos.64" "hashmapupo" "hashupo" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:13, 1:3] 0 0 0 0 0.000419 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:13] "tabulate" "table" "table.64" "hashmaptab" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:7, 1:3] 0 0 0 0.00236 0.00714 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:7] "rank" "rank.keep" "rank.64" "sortorderrnk" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:6, 1:3] 0 0 0.00189 0.00714 0 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:6] "quantile" "quantile.64" "sortqtl" "orderqtl" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:9, 1:3] 0 0 0.00105 1.17 0 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:9] "match" "match.64" "hashpos" "hashrev" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:10, 1:3] 0 0 0 0.00104 1.18 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:10] "%in%" "match.64" "%in%.64" "hashfin" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:10, 1:3] 0 0 1.64 2.48 2.48 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:10] "duplicated" "duplicated.64" "hashdup" "sortorderdup1" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:15, 1:3] 0 0 0 1.64 1.64 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:15] "unique" "unique.64" "hashmapuni" "hashuni" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:14, 1:3] 0 0 0 1.62 1.62 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:14] "unique" "unipos.64" "hashmapupo" "hashupo" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:13, 1:3] 0 0 0 0 0.32 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:13] "tabulate" "table" "table.64" "hashmaptab" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:7, 1:3] 0 0 0 2.96 10.69 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:7] "rank" "rank.keep" "rank.64" "sortorderrnk" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:6, 1:3] 0 0 1.62 10.61 0 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:6] "quantile" "quantile.64" "sortqtl" "orderqtl" ... .. ..$ : chr [1:3] "prep" "both" "use" - attr(*, "dim")= int [1:2] 8 2 - attr(*, "dimnames")=List of 2 ..$ : chr [1:8] "match" "%in%" "duplicated" "unique" ... ..$ : chr [1:2] "65536" "33554432"

Examples

data(optimizer64.data)
print(optimizer64.data)
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(2,1))
par(cex=0.7)
for (i in 1:nrow(optimizer64.data)){
 for (j in 1:2){
   tim <- optimizer64.data[[i,j]]
  barplot(t(tim))
  if (rownames(optimizer64.data)[i]=="match")
   title(paste("match", colnames(optimizer64.data)[j], "in", colnames(optimizer64.data)[3-j]))
  else if (rownames(optimizer64.data)[i]=="%in%")
   title(paste(colnames(optimizer64.data)[j], "%in%", colnames(optimizer64.data)[3-j]))
  else
   title(paste(rownames(optimizer64.data)[i], colnames(optimizer64.data)[j]))
 }
}
par(mfrow=c(1,1))

(P)ercent (Rank)s

Description

Function prank.integer64 projects the values [min..max] via ranks [1..n] to [0..1]. qtile.integer64 is the inverse function of 'prank.integer64' and projects [0..1] to [min..max].

Usage

prank(x, ...)
	## S3 method for class 'integer64'
prank(x, method = NULL, ...)

Arguments

x

a integer64 vector

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

Function prank.integer64 is based on rank.integer64.

Value

prank returns a numeric vector of the same length as x.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

rank.integer64 for simple ranks and qtile for the inverse function quantiles.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
prank(x)

x <- x[!is.na(x)]
stopifnot(identical(x,  unname(qtile(x, probs=prank(x)))))

(Q)uan(Tile)s

Description

Function prank.integer64 projects the values [min..max] via ranks [1..n] to [0..1]. qtile.ineger64 is the inverse function of 'prank.integer64' and projects [0..1] to [min..max].

Usage

qtile(x, probs=seq(0, 1, 0.25), ...)
	## S3 method for class 'integer64'
qtile(x, probs = seq(0, 1, 0.25), names = TRUE, method = NULL, ...)
	## S3 method for class 'integer64'
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, type=0L, ...)
	## S3 method for class 'integer64'
median(x, na.rm = FALSE, ...)
 ## S3 method for class 'integer64'
mean(x, na.rm = FALSE, ...)
	## S3 method for class 'integer64'
summary(object, ...)
 ## mean(x, na.rm = FALSE, ...)
 ## or
 ## mean(x, na.rm = FALSE)

Arguments

x

a integer64 vector

object

a integer64 vector

probs

numeric vector of probabilities with values in [0,1] - possibly containing NAs

names

logical; if TRUE, the result has a names attribute. Set to FALSE for speedup with many probs.

type

an integer selecting the quantile algorithm, currently only 0 is supported, see details

method

NULL for automatic method selection or a suitable low-level method, see details

na.rm

logical; if TRUE, any NA and NaN's are removed from x before the quantiles are computed.

...

ignored

Details

Functions quantile.integer64 with type=0 and median.integer64 are convenience wrappers to qtile.
Function qtile behaves very similar to quantile.default with type=1 in that it only returns existing values, it is mostly symetric but it is using 'round' rather than 'floor'.
Note that this implies that median.integer64 does not interpolate for even number of values (interpolation would create values that could not be represented as 64-bit integers).
This function automatically chooses from several low-level functions considering the size of x and the availability of a cache. Suitable methods are sortqtl (fast sorting) and orderqtl (memory saving ordering).

Value

prank returns a numeric vector of the same length as x.
qtile returns a vector with elements from x at the relative positions specified by probs.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

rank.integer64 for simple ranks and quantile for quantiles.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
qtile(x, probs=seq(0, 1, 0.25))
quantile(x, probs=seq(0, 1, 0.25), na.rm=TRUE)
median(x, na.rm=TRUE)
summary(x)

x <- x[!is.na(x)]
stopifnot(identical(x,  unname(qtile(x, probs=prank(x)))))

Low-level intger64 methods for in-RAM sorting and ordering

Description

Fast low-level methods for sorting and ordering. The ..sortorder methods do sorting and ordering at once, which requires more RAM than ordering but is (almost) as fast as as sorting.

Usage

## S3 method for class 'integer64'
shellsort(x, has.na=TRUE, na.last=FALSE, decreasing=FALSE, ...)
## S3 method for class 'integer64'
shellsortorder(x, i, has.na=TRUE, na.last=FALSE, decreasing=FALSE, ...)
## S3 method for class 'integer64'
shellorder(x, i, has.na=TRUE, na.last=FALSE, decreasing=FALSE, ...)
## S3 method for class 'integer64'
mergesort(x, has.na=TRUE, na.last=FALSE, decreasing=FALSE, ...)
## S3 method for class 'integer64'
mergeorder(x, i, has.na=TRUE, na.last=FALSE, decreasing=FALSE, ...)
## S3 method for class 'integer64'
mergesortorder(x, i, has.na=TRUE, na.last=FALSE, decreasing=FALSE, ...)
## S3 method for class 'integer64'
quicksort(x, has.na=TRUE, na.last=FALSE, decreasing=FALSE
, restlevel=floor(1.5*log2(length(x))), ...)
## S3 method for class 'integer64'
quicksortorder(x, i, has.na=TRUE, na.last=FALSE, decreasing=FALSE
, restlevel=floor(1.5*log2(length(x))), ...)
## S3 method for class 'integer64'
quickorder(x, i, has.na=TRUE, na.last=FALSE, decreasing=FALSE
, restlevel=floor(1.5*log2(length(x))), ...)
## S3 method for class 'integer64'
radixsort(x, has.na=TRUE, na.last=FALSE, decreasing=FALSE, radixbits=8L, ...)
## S3 method for class 'integer64'
radixsortorder(x, i, has.na=TRUE, na.last=FALSE, decreasing=FALSE, radixbits=8L, ...)
## S3 method for class 'integer64'
radixorder(x, i, has.na=TRUE, na.last=FALSE, decreasing=FALSE, radixbits=8L, ...)
## S3 method for class 'integer64'
ramsort(x, has.na = TRUE, na.last=FALSE, decreasing = FALSE, stable = TRUE
, optimize = c("time", "memory"), VERBOSE = FALSE, ...)
## S3 method for class 'integer64'
ramsortorder(x, i, has.na = TRUE, na.last=FALSE, decreasing = FALSE, stable = TRUE
, optimize = c("time", "memory"), VERBOSE = FALSE, ...)
## S3 method for class 'integer64'
ramorder(x, i, has.na = TRUE, na.last=FALSE, decreasing = FALSE, stable = TRUE
, optimize = c("time", "memory"), VERBOSE = FALSE, ...)

Arguments

x

a vector to be sorted by ramsort and ramsortorder, i.e. the output of sort

i

integer positions to be modified by ramorder and ramsortorder, default is 1:n, in this case the output is similar to order

has.na

boolean scalar defining whether the input vector might contain NAs. If we know we don't have NAs, this may speed-up. Note that you risk a crash if there are unexpected NAs with has.na=FALSE

na.last

boolean scalar telling ramsort whether to sort NAs last or first. Note that 'boolean' means that there is no third option NA as in sort

decreasing

boolean scalar telling ramsort whether to sort increasing or decreasing

stable

boolean scalar defining whether stable sorting is needed. Allowing non-stable may speed-up.

optimize

by default ramsort optimizes for 'time' which requires more RAM, set to 'memory' to minimize RAM requirements and sacrifice speed

restlevel

number of remaining recursionlevels before quicksort switches from recursing to shellsort

radixbits

size of radix in bits

VERBOSE

cat some info about chosen method

...

further arguments, passed from generics, ignored in methods

Details

see ramsort

Value

These functions return the number of NAs found or assumed during sorting

Note

Note that these methods purposely violate the functional programming paradigm: they are called for the side-effect of changing some of their arguments. The sort-methods change x, the order-methods change i, and the sortoder-methods change both x and i

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

ramsort for the generic, ramsort.default for the methods provided by package ff, sort.integer64 for the sort interface and sortcache for caching the work of sorting

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
  x
  message("ramsort example")
  s <- clone(x)
  ramsort(s)
  message("s has been changed in-place - whether or not ramsort uses an in-place algorithm")
  s
  message("ramorder example")
  s <- clone(x)
  o <- seq_along(s)
  ramorder(s, o)
  message("o has been changed in-place - s remains unchanged")
  s
  o
  s[o]
  message("ramsortorder example")
  o <- seq_along(s)
  ramsortorder(s, o)
  message("s and o have both been changed in-place - this is much faster")
  s
  o

Sample Ranks from integer64

Description

Returns the sample ranks of the values in a vector. Ties (i.e., equal values) are averaged and missing values propagated.

Usage

## S3 method for class 'integer64'
rank(x, method = NULL, ...)

Arguments

x

a integer64 vector

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache. Suitable methods are sortorderrnk (fast ordering) and orderrnk (memory saving ordering).

Value

A numeric vector of the same length as x.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

order.integer64, rank and prank for percent rank.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
rank.integer64(x)

stopifnot(identical(rank.integer64(x),  rank(as.integer(x)
, na.last="keep", ties.method = "average")))

Replicate elements of integer64 vectors

Description

Replicate elements of integer64 vectors

Usage

## S3 method for class 'integer64'
rep(x, ...)

Arguments

x

a vector of 'integer64' to be replicated

...

further arguments passed to NextMethod

Value

rep returns a integer64 vector

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

c.integer64 rep.integer64 as.data.frame.integer64 integer64

Examples

rep(as.integer64(1:2), 6)
  rep(as.integer64(1:2), c(6,6))
  rep(as.integer64(1:2), length.out=6)

integer64: random numbers

Description

Create uniform random 64-bit integers within defined range

Usage

runif64(n, min = lim.integer64()[1], max = lim.integer64()[2], replace=TRUE)

Arguments

n

length of return vector

min

lower inclusive bound for random numbers

max

upper inclusive bound for random numbers

replace

set to FALSE for sampleing from a finite pool, see sample

Details

For each random integer we call R's internal C interface unif_rand() twice. Each call is mapped to 2^32 unsigned integers. The two 32-bit patterns are concatenated to form the new integer64. This process is repeated until the result is not a NA_INTEGER64.

Value

a integer64 vector

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

runif, hashfun

Examples

runif64(12)
  runif64(12, -16, 16)
  runif64(12, 0, as.integer64(2^60)-1)  # not 2^60-1 !
  var(runif(1e4))
  var(as.double(runif64(1e4, 0, 2^40))/2^40)  # ~ = 1/12 = .08333

  table(sample(16, replace=FALSE))
  table(runif64(16, 1, 16, replace=FALSE))
  table(sample(16, replace=TRUE))
  table(runif64(16, 1, 16, replace=TRUE))

integer64: Sequence Generation

Description

Generating sequence of integer64 values

Usage

## S3 method for class 'integer64'
seq(from = NULL, to = NULL, by = NULL, length.out = NULL, along.with = NULL, ...)

Arguments

from

integer64 scalar (in order to dispatch the integer64 method of seq

to

scalar

by

scalar

length.out

scalar

along.with

scalar

...

ignored

Details

seq.integer64 does coerce its arguments 'from', 'to' and 'by' to integer64. If not provided, the argument 'by' is automatically determined as +1 or -1, but the size of 'by' is not calculated as in seq (because this might result in a non-integer value).

Value

an integer64 vector with the generated sequence

Note

In base R : currently is not generic and does not dispatch, see section "Limitations inherited from Base R" in integer64

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

c.integer64 rep.integer64 as.data.frame.integer64 integer64

Examples

# colon not activated: as.integer64(1):12
  seq(as.integer64(1), 12, 2)
  seq(as.integer64(1), by=2, length.out=6)

High-level intger64 methods for sorting and ordering

Description

Fast high-level methods for sorting and ordering. These are wrappers to ramsort and friends and do not modify their arguments.

Usage

## S3 method for class 'integer64'
sort(x, decreasing = FALSE, has.na = TRUE, na.last = TRUE, stable = TRUE
, optimize = c("time", "memory"), VERBOSE = FALSE, ...)
## S3 method for class 'integer64'
order(..., na.last = TRUE, decreasing = FALSE, has.na = TRUE, stable = TRUE
, optimize = c("time", "memory"), VERBOSE = FALSE)

Arguments

x

a vector to be sorted by ramsort and ramsortorder, i.e. the output of sort

has.na

boolean scalar defining whether the input vector might contain NAs. If we know we don't have NAs, this may speed-up. Note that you risk a crash if there are unexpected NAs with has.na=FALSE

na.last

boolean scalar telling ramsort whether to sort NAs last or first. Note that 'boolean' means that there is no third option NA as in sort

decreasing

boolean scalar telling ramsort whether to sort increasing or decreasing

stable

boolean scalar defining whether stable sorting is needed. Allowing non-stable may speed-up.

optimize

by default ramsort optimizes for 'time' which requires more RAM, set to 'memory' to minimize RAM requirements and sacrifice speed

VERBOSE

cat some info about chosen method

...

further arguments, passed from generics, ignored in methods

Details

see sort and order

Value

sort returns the sorted vector and vector returns the order positions.

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

sort, sortcache

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
  x
  sort(x)
  message("the following has default optimize='time' which is faster but requires more RAM
, this calls 'ramorder'")
  order.integer64(x)
  message("slower with less RAM, this calls 'ramsortorder'")
  order.integer64(x, optimize="memory")

Searching and other uses of sorting for 64bit integers

Description

This is roughly an implementation of hash functionality but based on sorting instead on a hasmap. Since sorting is more informative than hashingwe can do some more interesting things.

Usage

sortnut(sorted, ...)
ordernut(table, order, ...)
sortfin(sorted, x, ...)
orderfin(table, order, x, ...)
orderpos(table, order, x, ...)
sortorderpos(sorted, order, x, ...)
orderdup(table, order, ...)
sortorderdup(sorted, order, ...)
sortuni(sorted, nunique, ...)
orderuni(table, order, nunique, ...)
sortorderuni(table, sorted, order, nunique, ...)
orderupo(table, order, nunique, ...)
sortorderupo(sorted, order, nunique, keep.order = FALSE, ...)
ordertie(table, order, nties, ...)
sortordertie(sorted, order, nties, ...)
sorttab(sorted, nunique, ...)
ordertab(table, order, nunique, ...)
sortordertab(sorted, order, ...)
orderkey(table, order, na.skip.num = 0L, ...)
sortorderkey(sorted, order, na.skip.num = 0L, ...)
orderrnk(table, order, na.count, ...)
sortorderrnk(sorted, order, na.count, ...)
## S3 method for class 'integer64'
sortnut(sorted, ...)
## S3 method for class 'integer64'
ordernut(table, order, ...)
## S3 method for class 'integer64'
sortfin(sorted, x, method=NULL, ...)
## S3 method for class 'integer64'
orderfin(table, order, x, method=NULL, ...)
## S3 method for class 'integer64'
orderpos(table, order, x, nomatch=NA, method=NULL, ...)
## S3 method for class 'integer64'
sortorderpos(sorted, order, x, nomatch=NA, method=NULL, ...)
## S3 method for class 'integer64'
orderdup(table, order, method=NULL, ...)
## S3 method for class 'integer64'
sortorderdup(sorted, order, method=NULL, ...)
## S3 method for class 'integer64'
sortuni(sorted, nunique, ...)
## S3 method for class 'integer64'
orderuni(table, order, nunique, keep.order=FALSE, ...)
## S3 method for class 'integer64'
sortorderuni(table, sorted, order, nunique, ...)
## S3 method for class 'integer64'
orderupo(table, order, nunique, keep.order=FALSE, ...)
## S3 method for class 'integer64'
sortorderupo(sorted, order, nunique, keep.order = FALSE, ...)
## S3 method for class 'integer64'
ordertie(table, order, nties, ...)
## S3 method for class 'integer64'
sortordertie(sorted, order, nties, ...)
## S3 method for class 'integer64'
sorttab(sorted, nunique, ...)
## S3 method for class 'integer64'
ordertab(table, order, nunique, denormalize=FALSE, keep.order=FALSE, ...)
## S3 method for class 'integer64'
sortordertab(sorted, order, denormalize=FALSE, ...)
## S3 method for class 'integer64'
orderkey(table, order, na.skip.num = 0L, ...)
## S3 method for class 'integer64'
sortorderkey(sorted, order, na.skip.num = 0L, ...)
## S3 method for class 'integer64'
orderrnk(table, order, na.count, ...)
## S3 method for class 'integer64'
sortorderrnk(sorted, order, na.count, ...)
## S3 method for class 'integer64'
sortqtl(sorted, na.count, probs, ...)
## S3 method for class 'integer64'
orderqtl(table, order, na.count, probs, ...)

Arguments

x

an integer64 vector

sorted

a sorted integer64 vector

table

the original data with original order under the sorted vector

order

an integer order vector that turns 'table' into 'sorted'

nunique

number of unique elements, usually we get this from cache or call sortnut or ordernut

nties

number of tied values, usually we get this from cache or call sortnut or ordernut

denormalize

FALSE returns counts of unique values, TRUE returns each value with its counts

nomatch

the value to be returned if an element is not found in the hashmap

keep.order

determines order of results and speed: FALSE (the default) is faster and returns in sorted order, TRUE returns in the order of first appearance in the original data, but this requires extra work

probs

vector of probabilities in [0..1] for which we seek quantiles

na.skip.num

0 or the number of NAs. With 0, NAs are coded with 1L, with the number of NAs, these are coded with NA, the latter needed for as.factor.integer64

na.count

the number of NAs, needed for this low-level function algorithm

method

see details

...

further arguments, passed from generics, ignored in methods

Details

sortfun orderfun sortorderfun see also description
sortnut ordernut return number of tied and of unique values
sortfin orderfin %in%.integer64 return logical whether x is in table
orderpos sortorderpos match return positions of x in table
orderdup sortorderdup duplicated return logical whether values are duplicated
sortuni orderuni sortorderuni unique return unique values (=dimensiontable)
orderupo sortorderupo unique return positions of unique values
ordertie sortordertie return positions of tied values
orderkey sortorderkey positions of values in vector of unique values (match in dimensiontable)
sorttab ordertab sortordertab table tabulate frequency of values
orderrnk sortorderrnk rank averaging ties
sortqtl orderqtl return quantiles given probabilities

The functions sortfin, orderfin, orderpos and sortorderpos each offer three algorithms for finding x in table.
With method=1L each value of x is searched independently using binary search, this is fastest for small tables.
With method=2L the values of x are first sorted and then searched using doubly exponential search, this is the best allround method.
With method=3L the values of x are first sorted and then searched using simple merging, this is the fastest method if table is huge and x has similar size and distribution of values.
With method=NULL the functions use a heuristic to determine the fastest algorithm.

The functions orderdup and sortorderdup each offer two algorithms for setting the truth values in the return vector.
With method=1L the return values are set directly which causes random write access on a possibly large return vector.
With method=2L the return values are first set in a smaller bit-vector – random access limited to a smaller memory region – and finally written sequentially to the logical output vector.
With method=NULL the functions use a heuristic to determine the fastest algorithm.

Value

see details

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

match

Examples

message("check the code of 'optimizer64' for examples:")
 print(optimizer64)

Summary functions for integer64 vectors

Description

Summary functions for integer64 vectors. Function 'range' without arguments returns the smallest and largest value of the 'integer64' class.

Usage

## S3 method for class 'integer64'
all(..., na.rm = FALSE)
## S3 method for class 'integer64'
any(..., na.rm = FALSE)
## S3 method for class 'integer64'
min(..., na.rm = FALSE)
## S3 method for class 'integer64'
max(..., na.rm = FALSE)
## S3 method for class 'integer64'
range(..., na.rm = FALSE, finite = FALSE)
lim.integer64()
## S3 method for class 'integer64'
sum(..., na.rm = FALSE)
## S3 method for class 'integer64'
prod(..., na.rm = FALSE)

Arguments

...

atomic vectors of class 'integer64'

na.rm

logical scalar indicating whether to ignore NAs

finite

logical scalar indicating whether to ignore NAs (just for compatibility with range.default)

Details

The numerical summary methods always return integer64. Therefor the methods for min,max and range do not return +Inf,-Inf on empty arguments, but +9223372036854775807, -9223372036854775807 (in this sequence). The same is true if only NAs are submitted with argument na.rm=TRUE.
lim.integer64 returns these limits in proper order -9223372036854775807, +9223372036854775807 and without a warning.

Value

all and any return a logical scalar
range returns a integer64 vector with two elements
min, max, sum and prod return a integer64 scalar

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

mean.integer64 cumsum.integer64 integer64

Examples

lim.integer64()
  range(as.integer64(1:12))

Cross Tabulation and Table Creation for integer64

Description

table.integer64 uses the cross-classifying integer64 vectors to build a contingency table of the counts at each combination of vector values.

Usage

table.integer64(...
, return = c("table","data.frame","list")
, order = c("values","counts")
, nunique = NULL
, method = NULL
, dnn = list.names(...), deparse.level = 1
)

Arguments

...

one or more objects which can be interpreted as factors (including character strings), or a list (or data frame) whose components can be so interpreted. (For as.table and as.data.frame, arguments passed to specific methods.)

nunique

NULL or the number of unique values of table (including NA). Providing nunique can speed-up matching when table has no cache. Note that a wrong nunique can cause undefined behaviour up to a crash.

order

By default results are created sorted by "values", or by "counts"

method

NULL for automatic method selection or a suitable low-level method, see details

return

choose the return format, see details

dnn

the names to be given to the dimensions in the result (the dimnames names).

deparse.level

controls how the default dnn is constructed. See ‘Details’.

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache. Suitable methods are hashmaptab (simultaneously creating and using a hashmap) , hashtab (first creating a hashmap then using it) , sortordertab (fast ordering) and ordertab (memory saving ordering).
If the argument dnn is not supplied, the internal function list.names is called to compute the ‘dimname names’. If the arguments in ... are named, those names are used. For the remaining arguments, deparse.level = 0 gives an empty name, deparse.level = 1 uses the supplied argument if it is a symbol, and deparse.level = 2 will deparse the argument.

Arguments exclude, useNA, are not supported, i.e. NAs are always tabulated, and, different from table they are sorted first if order="values".

Value

By default (with return="table") table returns a contingency table, an object of class "table", an array of integer values. Note that unlike S the result is always an array, a 1D array if one factor is given. Note also that for multidimensional arrays this is a dense return structure which can dramatically increase RAM requirements (for large arrays with high mutual information, i.e. many possible input combinations of which only few occur) and that table is limited to 2^31 possible combinations (e.g. two input vectors with 46340 unique values only). Finally note that the tabulated values or value-combinations are represented as dimnames and that the implied conversion of values to strings can cause severe performance problems since each string needs to be integrated into R's global string cache.
You can use the other return= options to cope with these problems, the potential combination limit is increased from 2^31 to 2^63 with these options, RAM is only rewquired for observed combinations and string conversion is avoided.
With return="data.frame" you get a dense representation as a data.frame (like that resulting from as.data.frame(table(...))) where only observed combinations are listed (each as a data.frame row) with the corresponding frequency counts (the latter as component named by responseName). This is the inverse of xtabs..
With return="list" you also get a dense representation as a simple list with components

values

a integer64 vector of the technically tabulated values, for 1D this is the tabulated values themselves, for kD these are the values representing the potential combinations of input values

counts

the frequency counts

dims

only for kD: a list with the vectors of the unique values of the input dimensions

Note

Note that by using as.integer64.factor we can also input factors into table.integer64 – only the levels get lost.
Note that because of the existence of as.factor.integer64 the standard table function – within its limits – can also be used for integer64, and especially for combining integer64 input with other data types.

See Also

table for more info on the standard version coping with Base R's data types, tabulate which can faster tabulate integers with a limited range [1L .. nL not too big], unique.integer64 for the unique values without counting them and unipos.integer64 for the positions of the unique values.

Examples

message("pure integer64 examples")
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
y <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
z <- sample(c(rep(NA, 9), letters), 32, TRUE)
table.integer64(x)
table.integer64(x, order="counts")
table.integer64(x, y)
table.integer64(x, y, return="data.frame")

message("via as.integer64.factor we can use 'table.integer64' also for factors")
table.integer64(x, as.integer64(as.factor(z)))

message("via as.factor.integer64 we can also use 'table' for integer64")
table(x)
table(x, exclude=NULL)
table(x, z, exclude=NULL)

Extract Positions of Tied Elements

Description

tiepos returns the positions of those elements that participate in ties.

Usage

tiepos(x, ...)
## S3 method for class 'integer64'
tiepos(x, nties = NULL, method = NULL, ...)

Arguments

x

a vector or a data frame or an array or NULL.

nties

NULL or the number of tied values (including NA). Providing nties can speed-up when x has no cache. Note that a wrong nties can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache. Suitable methods are sortordertie (fast ordering) and ordertie (memory saving ordering).

Value

an integer vector of positions

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

rank.integer64 for possibly tied ranks and unipos.integer64 for positions of unique values.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
tiepos(x)

stopifnot(identical(tiepos(x),  (1:length(x))[duplicated(x) | rev(duplicated(rev(x)))]))

Extract Positions of Unique Elements

Description

unipos returns the positions of those elements returned by unique.

Usage

unipos(x, incomparables = FALSE, order = c("original","values","any"), ...)
## S3 method for class 'integer64'
unipos(x, incomparables = FALSE, order = c("original","values","any")
, nunique = NULL, method = NULL, ...)

Arguments

x

a vector or a data frame or an array or NULL.

incomparables

ignored

order

The order in which positions of unique values will be returned, see details

nunique

NULL or the number of unique values (including NA). Providing nunique can speed-up when x has no cache. Note that a wrong nunique can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache. Suitable methods are hashmapupo (simultaneously creating and using a hashmap) , hashupo (first creating a hashmap then using it) , sortorderupo (fast ordering) and orderupo (memory saving ordering).
The default order="original" collects unique values in the order of the first appearance in x like in unique, this costs extra processing. order="values" collects unique values in sorted order like in table, this costs extra processing with the hash methods but comes for free. order="any" collects unique values in undefined order, possibly faster. For hash methods this will be a quasi random order, for sort methods this will be sorted order.

Value

an integer vector of positions

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

unique.integer64 for unique values and match.integer64 for general matching.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
unipos(x)
unipos(x, order="values")

stopifnot(identical(unipos(x),  (1:length(x))[!duplicated(x)]))
stopifnot(identical(unipos(x),  match.integer64(unique(x), x)))
stopifnot(identical(unipos(x, order="values"),  match.integer64(unique(x, order="values"), x)))
stopifnot(identical(unique(x),  x[unipos(x)]))
stopifnot(identical(unique(x, order="values"),  x[unipos(x, order="values")]))

Extract Unique Elements from integer64

Description

unique returns a vector like x but with duplicate elements/rows removed.

Usage

## S3 method for class 'integer64'
unique(x, incomparables = FALSE, order = c("original","values","any")
, nunique = NULL, method = NULL, ...)

Arguments

x

a vector or a data frame or an array or NULL.

incomparables

ignored

order

The order in which unique values will be returned, see details

nunique

NULL or the number of unique values (including NA). Providing nunique can speed-up matching when x has no cache. Note that a wrong nunique can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache. Suitable methods are hashmapuni (simultaneously creating and using a hashmap) , hashuni (first creating a hashmap then using it) , sortuni (fast sorting for sorted order only) , sortorderuni (fast ordering for original order only) and orderuni (memory saving ordering).
The default order="original" returns unique values in the order of the first appearance in x like in unique, this costs extra processing. order="values" returns unique values in sorted order like in table, this costs extra processing with the hash methods but comes for free. order="any" returns unique values in undefined order, possibly faster. For hash methods this will be a quasi random order, for sort methods this will be sorted order.

Value

For a vector, an object of the same type of x, but with only one copy of each duplicated element. No attributes are copied (so the result has no names).

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

unique for the generic, unipos which gives the indices of the unique elements and table.integer64 which gives frequencies of the unique elements.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
unique(x)
unique(x, order="values")

stopifnot(identical(unique(x),  x[!duplicated(x)]))
stopifnot(identical(unique(x),  as.integer64(unique(as.integer(x)))))
stopifnot(identical(unique(x, order="values")
,  as.integer64(sort(unique(as.integer(x)), na.last=FALSE))))

Binary operators for integer64 vectors

Description

Binary operators for integer64 vectors.

Usage

## S3 method for class 'integer64'
e1 & e2
## S3 method for class 'integer64'
e1 | e2
## S3 method for class 'integer64'
xor(x,y)
## S3 method for class 'integer64'
e1 != e2
## S3 method for class 'integer64'
e1 == e2
## S3 method for class 'integer64'
e1 < e2
## S3 method for class 'integer64'
e1 <= e2
## S3 method for class 'integer64'
e1 > e2
## S3 method for class 'integer64'
e1 >= e2
## S3 method for class 'integer64'
e1 + e2
## S3 method for class 'integer64'
e1 - e2
## S3 method for class 'integer64'
e1 * e2
## S3 method for class 'integer64'
e1 ^ e2
## S3 method for class 'integer64'
e1 / e2
## S3 method for class 'integer64'
e1 %/% e2
## S3 method for class 'integer64'
e1 %% e2
binattr(e1,e2) # for internal use only

Arguments

e1

an atomic vector of class 'integer64'

e2

an atomic vector of class 'integer64'

x

an atomic vector of class 'integer64'

y

an atomic vector of class 'integer64'

Value

&, |, xor, !=, ==, <, <=, >, >= return a logical vector
^ and / return a double vector
+, -, *, %/%, %% return a vector of class 'integer64'

Author(s)

Jens Oehlschlägel <[email protected]>

See Also

format.integer64 integer64

Examples

as.integer64(1:12) - 1